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LETTER TO THE EDITOR 

Boson realisations of Lie algebras and expansion 
of shift operators 

C Quesnet 
Service de Physique ThCorique et MathCmatique - C P  229, UniversitC Libre de Bruxelles, 
Boulevard du Triomphe, B-1050 Brussels, Belgium 

Received 4 June 1987 

Abstract. A shift operator expansion is used to extend the range of the boson realisation 
method of calculation of Lie algebra generator matrix elements to those chains of algebras 
for which the original technique cannot be applied. The example of wsp(4, R )  = 

w(2) 8 s p ( 4 ,  R )  3 sp(4, R )  is treated in detail and a generalisation to wsp(2d, R )  = 
w(d)+sp(2d,  R)3sp(2d ,  R )  is pointed out. 

A few years ago, a procedure was introduced to evaluate the matrix elements of the 
sp(2d, R )  Lie algebra generators in the sp(2d, R )  3 u ( d )  chain from those of its 
contracted Lie algebra generators (Rowe et a1 1984, Deenen and Quesne 1984a). Such 
a method, based upon boson or coherent-state realisations of Lie algebras (Deenen 
and Quesne 1982, 1984b, c, 1985, Rowe 1984, Rowe et a1 1985, Castaiios e? a1 1985, 
1986), has found many applications to algebras of physical interest (for a list of 
references see, e.g., Hecht and Suzuki (1987)). It applies to chains of Lie algebras 
g 2 h ,  for which h contains a Cartan subalgebra of g, and g can be decomposed as 
the direct sum g = n+O h 0 n- , where the generators in n-( n+) correspond to negative 
(positive) roots and annihilate all the basis states of the subalgebra h irreducible 
representation (irrep) containing the lowest (highest) weight state of the full algebra 
g irrep. 

However, there exist various physically relevant chains of algebras for which some 
of the above conditions are not fulfilled. Recently definite progress in the extension 
of the method to such cases was achieved by Hecht and Suzuki (1987). Their recognition 
of the important part played by shift operators for g 3 h in such a generalisation raises 
some interesting problems. In the example studied usp(4) 3 usp(2)Ousp(2), the 
usp(2) = su(2) subalgebras indeed make the construction of shift operators quite 
straightforward, while allowing the Wigner-Racah calculus to be used in their normali- 
sation coefficient calculation by the boson realisation technique. However, for higher- 
dimensional algebras, the shift operators may be unknown and the Wigner-Racah 
calculus unavailable. Therefore, techniques similar to the boson realisation technique 
would be welcome to build shift operators and to evaluate their normalisation 
coefficient. 

The purpose of the present letter is to introduce such methods. Since boson 
realisations provide a way of reconstructing Lie algebras by expanding their contracted 
algebras, it is obvious that the converse procedures of shift operator contraction and 
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expansion are relevant here. Although shift operator contraction is well known (Wong 
and Yeh 1979), to the author's knowledge the expansion of the same is new and looks 
quite promising as an alternative procedure to the known shift operator construction 
methods (Nagel and Moshinsky 1965, Pang and Hecht 1967, Wong 1967, Bincer 1977, 
1978, 1982) which are often rather unwieldy. 

The proposed method will be illustrated by calculating the matrix elements of the 
wsp(4, R )  = w(2)$sp(4, R )  Lie algebra generators in the physically relevant chain 
wsp(4, R )  2 sp(4, RI ,  for which the shift operators are unknown. Such a chain is the 
two-dimensional counterpart of wsp(6, R )  = w(3)8sp(6, R )  2 sp(6, R ) ,  which finds 
interesting applications to the description of nuclear collective states (Rowe and 
Iachello 1983, Quesne 1987a, b). 

and 
Va = ( Ka)+,  where Greek indices run over -2, -1 , l ,  2. Together with the unit operator 
Z, they close under commutation, Their non-zero commutators are given by 

A basis of wsp(4, K )  is provided by the operators Aap  = Apa = 

in terms of the metric tensor g,, = (n/ial)Sa,-p.  The operators Aop form a basis of 
sp(4, R ) ,  while the operators Vu, together with I ,  span the Heisenberg-Weyl algebra 
w(2). In the following, we shall use the notation D& =Al1, D, = A - ,  , - I ,  E ,  = A, 
B: = V,, B, = V-,, where Latin indices run over 1 and 2 (Quesne 1987a). 

The wsp(4, R )  irreps considered here (Quesne 1987a, b) are characterised by two 
integer or half-odd-integer positive numbers SZ, 2 Cl,, and denoted by ((a)). By applying 
the raising generators E I 2 ,  0: and B:,  all basic states of ((a)) can be obtained from 
a lowest-weight state (LWS) la), defined by 

Elfin> = f l 3 - m  E2,IW = 0 D I J ) a )  = (2) 

B, In) = 0. (3)  

The irrep ((a)) separates into a direct sum of sp(4, R )  irreps ( U )  according to the 
branching rule 

where there are no multiplicities. Each sp(4, R )  irrep ( U )  is a positive discrete series 
one, whose LWS l a w )  is defined by equations similar to (2) with f23-l replaced by w 3 - ,  
and whose remaining states are obtained by applying E , ,  and DL on l a w ) .  

In the decomposition wsp(4, R )  = n+@sp(4, R ) O n - ,  the subspace n- is spanned 
by the commuting operators B, ,  which do not annihilate all the basis states of the 
sp(4, R )  irrep (a) containing the wsp(4, R )  LWS 142). Then, according to Hecht and 
Suzuki (1987), we have to consider (i) the raising operators R , ,  i = 1,2, for the 
wsp(4, R )  2 sp(4, R )  chain, and (ii) a boson realisation of wsp(4, R )  associated with 
the wsp(4, R )  2 u(2) chain, for which such a problem does not arise. 

The raising operators RI are defined by 

R,IRu) = N , ( w ) / a w ' )  ( 5 )  

where Nt( U )  is some normalisation coefficient, and U; = w, + S J f .  Equation ( 5 )  is 
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equivalent to the following conditions: 

R!l = ‘3-1. l R t  ( 6 a )  

( 6 b )  

[D,,, R , I D d  = 0. ( 6 c )  

[E21 , R I l P 4  = 0 

To build RI in terms of the wsp(4, R )  generators, we shall first contract wsp(4, R )  = 
sp(4, R )  to w(5)$u(2) = w(3)8u(2), then build the raising operators 9Zg for the latter 
chain and finally expand 9, to R,. 

Let us start with the contraction of wsp(4, R) .  By defining 

U’, = ED’, ‘ L J  = 8, = E, - ( 1/2E2)6,1 b:= B: b ,=& (7 )  
in the limit E + 0, the commutators ( 1 )  become those of the Lie algebra w(5)$u(2), 
where 4 2 )  is spanned by E,  and w(5) by the commuting boson creation operators 
U’, = b:, the corresponding annihilation operators a, = U,,, b,, and the unit operator. 
In the same limit, the subalgebra sp(4, R ) ,  formally augmented by the addition of the 
unit operator, contracts to w(3)8u(2), where w(3) is spanned by U &  U,, and I. When 
a, +02-= E-~+CO, the irrep ((a)) of wsp(4, R )  contracts to an irrep {{a}} of w(5)+u(2), 
where R ,  + fi2 = 0 and a, - fi2 = a, -a2.  Such an irrep has a LWS (a], defined by 

s,,Ia] = a3-,p1 8211a] = 0 a,  la] = 0 (8) 
b, (Cl] = 0. ( 9 )  

d =bo+ a A a  + btb 
In its representation space, the 4 2 )  generators E, can be written as 

(10) 
where the operators E:, span an intrinsic u(2) algebra with a single irrep [a].  In (IO),  
we use a matrix notion wherein 8,  do, ut ,  a are 2 x 2 matrices, bt is a 2 x 1 matrix, and 
b is a 1 x 2  matrix. The reduction of {{a}} into a sum of w(3)+u(2) irreps (3) is 
determined by a branching rule similar to equation (4). Each sp(4, R )  irrep ( w )  
contracts to a w(3)8u(2) irrep {3}, such that W l  + W 2  = 0, and GI - G 2  = wI - w 2 .  The 
LWS lfi3] of {3} satisfies equations similar to (8) with W3- ,  substituted for 

i.e. the raising operators 
for the chain w(5)$u(2) 3 w(3)+u(2), defined by 

where NI(&) is a normalisation coefficient different from N , ( o ) .  They must satisfy 
conditions similar to equations (6a, b, c )  with E,,, a,, and Ifi&i,] substituted for 
E,, E,, , D,, and l a w ) ,  respectively. Such conditions are easily solved yielding 

and 

Let us then consider the contracted raising operators 

.?Be,(a3] = Nt(ij)1aG1] (11) 

3, = b: .?B2=b;(glI - ‘ i F 2 2 ) + b i i Z l Z  (12) 

N , ( 3 )  = [ ( 3 , - - a i , + 1 ) ( W , - f i 2 + 2 ) ( 2 , - W 2 + 2 ) - 1 ] ” 2  (13) 
N 2 ( 3 )  = [(a, - W 2 ) ( W 2  -a2+ l ) ( W l  - W 2 +  1 ) y  

8 = d 0 + b t b .  (14) 

where 

With a view to possible extensions of the present method to higher-dimensional 
algebras, it is worth noting that 9, and Nl(cij) can also be built by contracting the 
corresponding operators and coefficients for 4 2 ,  1) 3 4 2 )  which according to Patera 
(1973) coincide with those for u(3) 2 u(2) determined by Nagel and Moshinsky (1965). 
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Let us now turn to the last step in the RI construction procedure, namely the 
expansion of to R I .  Consider the operators 

RI = klA10’+[G2, k,]AI”+[G,, kl]Ai2’ 

k ,  = Bi k 2 =  B : ( E , ~ - E ~ ~ ) + B ; E , ~  (16) 

G2,=f c 2 g0(lPlgu2’2. . . g a ~ ~ ’ 2 p A p l o 1 2 A P 2 L 3 .  . . Ap2p,l p = 1 , 2  (17)  

(15 )  

where 

are obtained from equation (12), and 

0 1  0 2 p  PI P 2 p  

are the sp(4, R )  Casimir operators written in terms of the inverse g m P  of the metric 
tensor g,, and the coefficients AIP’, p = 0,1 ,2 ,  are some functions of E , ,  and E 2 2 .  
These operators (15)  obviously satisfy equations (6a) and (6b). The coefficients can 
now be chosen in such a way that equation (6c) is also fulfilled. 

Since i , l f L w )  is a linear combination of states belonging to the sp(4, R )  irreps ( w ’ )  
and (w- ’ )  where j = 1,2,  and 0;’ = 0 k  - S , ,  equation ( 6 c )  is indeed equivalent to the 
following system of two equations: 

2 

p=1 
aiO’(w)+ c [gZ,(w-’) -gzp(w) laIP)=  0 j = l , 2  ( 1 8 )  

for the eigenvalues a j p ’ ( w )  of Aip’ associated with Iflo). In (18), g 2 , ( w )  denotes the 
eigenvalue of G2p corresponding to ( U )  (Nwachuku 1979). The resolution of (18)  
leads to the relations 

AIo’= -(2Ell  - 5)(2E22-3)(E,,  + E22-4)Aj2) 

A~L)=-(2E:,+2E,1E22+2E:2-13E,, - 11&2+28)Aj2’ 
(19a) 

where we assume that 

AI2’= -[2(2EZ,+2i-9)]-‘ (196) 

in order to fix the normalisation of R,. From the above results we obtain the following 
explicit expression for R,: 

RI =2Bi(E22- l ) (El i+  E22-3) -[2D:z(E22- 1 ) -  Di2E121B1 

- Di2(Ell+ E22 - 2)B2 (20) 

and a similar one for R 2 .  
The remaining problem to be solved is the evaluation of the normalisation coefficient 

N , ( w ) .  For such purpose, let us first consider the following Dyson boson realisation 
of wsp(4, R ) :  

ED = Eo+ + b tb  

DL = U &  DD = a ( E o +  b tb )+(Eo+66 t )a+a (a t a  -4Z)+ib (21) 
B L = b t  BD = 3 ’ U  + b 

associated with the wsp(4, R )  2 u(2) chain (Quesne 1987a, b). Here Z denotes the 2 x 2 
unit matrix and E o = & ’ o + ~ ( i l , + i 1 2 ) I .  By introducing (21) into equation (20) and its 
analogue for R 2 ,  we obtain a Dyson realisation of R,. 
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The next step in the N , ( o )  calculation procedure is to convert (Rl)D into a 

(22) 

Holstein-Primakoff ( HP) realisation 

(RI hP = K-I( R, )DK 
by means of a Hermitian operator K (Deenen and Quesne 1982, 1985, Rowe 1984, 
Castaiios et a1 1985, Hecht and Suzuki 1987). This amounts to imposing the condition 

K-’(R,)DK = K[(RT)D]tK-‘. (23) 
Since R, only acts in the subspace 2 of sp(4, R )  LWS I n w ) ,  we may restrict (22) and 
(23) to the bosonic image of 9, namely the space TB of w(3)$u(2) LWS Ific-51. Then 
it follows from the branching rule (4) that K is a diagonal operator. 

The restriction of (RI), and [(R:),lt to ZB is carried out by dropping all terms 
containing an a i  or a, operator on the left or right, respectively, and by using the 
equivalence bib, -E:,. The results can be written as 

(RI),= [(R:)D]~ = in XB (24) 
where 9, are the contracted operators (12), and FI” and Fi2’ are some functions of 
E; + bjb,, j = 1,2, @: = Z, E:, and @: = XI, EiE;,. For F‘,” and FY’, for instance, we 
obtain 

F\” = 2( E :2 + bib2 - 1 )( E:l+ E :2 + b: b, + bi 62 - 3) 

Fi2’ = ( E:2 + b:b2)( E:2 + blb2 + @: - 5 )  + i[@:(@: - 5 )  - @: + 121. 
(25) 

By taking the matrix element of equation (23) between the ket IGG] and the 
bra [ f i G f / ,  we obtain the following recursion relations for the eigenvalues k ( a ,  w )  of 
K :  

(k ( .n ,  w ) / k ( n ,  w l ) ) *  =A2)(n, w ) / f : Y f k  w )  1 = 1 , 2  (26) 

(27) 

where 

f,(”(n, w )  = 2 ( 0 ,  - i ) ( q  +w2-3)  fl“’(n, w )  = n, ( w ,  + 0, - i - j )  

are the eigenvalues of F:’) and F!” corresponding to (fic-51. Equation (26) completely 
determines the operator K in ZB. 

By combining equations (22), (24) and (26), an explicit expression for N I ( @ )  is 
finally obtained in terms of the functions (27) and (13). The result is 

N , ( w )  = (Wn, w ) / k ( f i ,  w’)lfl’”(n, w)”w,(w) 

= ( p ( n ,  w)f , ’2 ’ (n ,  w ) ) 1 / 2 N , ( w ) .  (28) 
The knowledge of N , ( w )  or, equivalently, that of K now enables us to calculate 

the matrix elements of the wsp(4, R )  generators B: in 9. For such purpose, we may 
either use the relation 

(nwf /B i - l / f lw)  = (k(42 ,  w ) / k ( n ,  w’))[nw’lb:- , l i lo] (29) 
or first determine (no’lk,lnw) from (15), (19) and (28) and then deduce 
(flo’(B:-,(n~w) from (16). Both procedures lead to the following results: 

(no’(B:lnw)= [ ~ ( W I  - l)(Wl +W2-3)(Wl -W2+2)]-’/2 

x [ ( W I  -2)(W, +02-3)(Wl -a,+ l)(Wl -02+2)]’/2 
(30) 

(nw21B:lfbw)= -[2(W2-2)(W1+ W2-3)(W, - W 2  + 1)]-”2 

x [ ( W 2  + 0, - 3)( W2 + 02 - 4 ) ( 0 1  - W2)(W2 - 0 2  + 1)]1’2. 
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It is then straightforward to obtain the matrix elements of B: and B, between any basis 
states of sp(4, R )  irreps (Quesne 1987b). Since the remaining wsp(4, R )  generators 
belong to sp(4, R ) ,  their matrix elements are well known (Rowe et a1 1984, Castafios 
et a1 1985, Deenen and Quesne 1985). 

In the present letter we have shown that the converse procedures of shift operator 
contraction and expansion provide a useful tool for implementing the boson realisation 
technique in a generator matrix element calculation when the original method cannot 
be applied in a straightforward way. Although written for the wsp(4, R )  3 sp(4, R )  
chain, the key equations (15) and (24) could be extended to wsp(2d, R )  3 sp(24 R )  
by including the Casimir operators, G6, G 8 , .  . . , G2d,  and by considering functions 
F!” and Fj2’ of E I + b j b ,  and @y=x;k,k,  kl EOk,k,EOk,k, . . . E&, where j=  1, .  . . , d. 
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